[1] 徐丹, 代勇, 纪军红. 基于卷积神经网络的驾驶人行为识别方法研究[J]. 中国安全科学学报, 2019, 29 (10):12-17. XU Dan, DAI Yong, JI Junhong. Research on driver behavior recognition method based on convolutional neural network[J]. China Safety Science Journal, 2019, 29 (10):12-17. [2] 刘通,付锐,张士伟,等.车辆典型危险行驶状态识别与检测研究进展[J].中国安全科学学报,2017,27(10):32-37. LIU Tong, FU Rui, ZHANG Shiwei, et al. Progress in research on identification and detection of vehicle typical hazardous driving states[J]. China Safety Science Journal, 2017,27(10):32-37. [3] HAN J, HEO O, PARK M, et al. Vehicle distance estimation using a mono-camera for FCW/AEB systems[J]. International Journal of Automotive Technology, 2016, 17(3):483-491. [4] ARENADO M I, TORRE-FERRERO C ,RENTERIA L A. et al. Monovision based vehicle detection, distance and relative speed measurement in urban traffic[J]. IET Intelligent Transport Systems,2014, 8(8):655-664. [5] 余厚云, 张为公. 基于单目视觉的跟驰车辆车距测量方法[J]. 东南大学学报:自然科学版, 2012, 42(3):154-158. YU Houyun, ZHANG Weigong. Method of vehicle distance measurement for following car based on monocular vision[J]. Journal of Southeast University: Natural Science Edition, 2012, 42(3):542-546. [6] 陈荣保, 赵聃, 王乾隆. 基于图像处理的前方行驶车辆速度测量方法[J]. 传感器与微系统, 2018, 37(4): 17-19. CHEN Rongbao, ZHAO Dan, WANG Qianlong. Measurement method of front vehicle speed based on image processing[J]. Transducer and Microsystem Technologies, 2018, 37(4): 17-19. [7] KANEKO H, MORIMOTO M, FUJII K. Vehicle speed estimation by in vehicle camera[C].World Automation Congress (WAC), 2012. IEEE, 2012:1-6. [8] 刘军, 后士浩, 张凯,等. 基于单目视觉车辆姿态角估计和逆透视变换的车距测量[J]. 农业工程学报, 2018, 34(13):70-76. LIU Jun, HOU Shihao, ZHANG Kai, et al. Vehicle distance measurement with implementation of vehicle attitude angle estimation and inverse perspective mapping based on monocular vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 70-76. [9] LIN Chienchuan, WANG Mingshi. Vehicle speeding early warning model using frame feature detection and HMM[C]. IEEE International Conference on Consumer Electronics,2011:DOI:10.1109/ISCE.2011.5973824. [10] 周劲草,魏朗,乔洁.面向雾天的双先验兴趣区域车道线识别算法研究[J].中国安全科学学报,2016,26(8):128-133. ZHOU Jincao, WEI Lang, QIAO Jie. Study on fog-oriented lane detection method based on dual-heuristic region of interest[J]. China Safety Science Journal, 2016,26(8):128-133. [11] 陈政宏, 李爱娟, 王希波, 等. 基于改进Hough变换的结构化道路车道线识别[J]. 科学技术与工程, 2020, 20(26): 10 829-10 834. CHEN Zhenghong, LI Aijuan, WANG Xibo, et al. Structured road lane line recognition based on improved Hough transformation[J]. Science Technology and Engineering, 2020, 20(26) : 10 829-10 834. [12] 李亚娣, 黄海波, 李相鹏,等. 基于Canny算子和Hough变换的夜间车道线检测[J]. 科学技术与工程, 2016, 16(31): 234-237. LI Yadi, HUANG Haibo, LI Xiangpeng, et al. Nighttime lane markings detection based on Canny operator and Hough transform[J]. Science Technology and Engineering, 2016, 16(31): 234-237. [13] ZHANG Daiming , FANG Bin , YANG Weibin , et al. Robust inverse perspective mapping based on vanishing point[C].International Conference on Security. IEEE, 2014: 458-463. [14] 王永忠, 文成林. 基于Haar纹理的非结构化道路消失点检测[J]. 中国图象图形学报, 2013, 18(4):382-391. WANG Yongzhong, WEN Chenglin. Vanishing point detection of unstructured road based on Haar texture[J]. Journal of Image and Graphics, 2013, 18(4):382-391. [15] PHUNG S L , LE M C , BOUZERDOUM A . Pedestrian lane detection in unstructured scenes for assistive navigation[J]. Computer Vision & Image Understanding, 2016, 149:186-196. [16] LIN Chinteng , SHEN Tzukuei , SHOU Yuwen . Construction of fisheye lens inverse perspective mapping model and its applications of obstacle detection[J]. Journal on Advances in Signal Processing, 2010, 2010(1): 1-23.
 |